

Journal of Organometallic Chemistry 571 (1998) 91-96

Insertion of CO and SO₂ into the N-N bond of $[Fe_2(CO)_6(\mu-Ph_2N_2)]$

Shariff E. Kabir, Michael Ruf, Heinrich Vahrenkamp *

Institut für Anorganische und Analytische Chemie der Universität Freiburg, Albertstrasse 21, D-79104 Freiburg, Germany

Received 2 June 1998; received in revised form 29 June 1998

Abstract

The N–N bond of the azobenzene ligand in $[Fe_2(CO)_6(\mu-Ph_2N_2)]$ (1) is unusually labile. In addition to being cleaved by incorporation of CO or H₂, it also inserts CO resulting from phosphine substitution at the iron atoms. Complexes $[Fe_2(CO)_5(PR_3)(\mu-PhN-CO-NPh)]$ (2a,b) and $[Fe_2(CO)_4\{P(OMe)_3\}_2(\mu-PhN-CO-NPh)]$ (2c) are formed with PPh₃ and P(OMe)₃. Bis(diphenylphosphino)methane produces $[Fe_2(CO)_4(\eta^1-dppm)_2(\mu-PhN-CO-NPh)]$ (2d). All these complexes also result from $[Fe_2(CO)_6(\mu-PhN-CO-NPh)]$ (2) and the corresponding phosphine. Reaction of 1 with SO₂ yields the insertion product $[Fe_2(CO)_6(\mu-PhN-SO_2-NPh)]$ (4). Complex 4 does not react with CO at temperatures up to its decomposition point. Its thermal degradation in the absence of CO, however, produces the CO insertion product 2, which involves SO₂ elimination with intermediate re-formation of 1. Treatment of 4 with phosphines results only in CO displacement, producing $[Fe_2(CO)_5P(OMe)_3(\mu-PhN-SO_2-NPh)]$ (4b), $[Fe_2(CO)_4(PR_3)_2(\mu-PhN-SO_2-NPh)]$ (4a,c, $PR_3 = PPh_3$ or $P(OMe)_3$), and $[Fe_2(CO)_4(\mu-dppm)(\mu-PhN-SO_2-NPh)]$ (4d). For comparison with the basic structures of 1, 2 and 4 two CO insertion products and two SO₂ insertion products were characterized by crystal structure determinations. © 1998 Elsevier Science S.A. All rights reserved.

Keywords: Iron; Azobenzene; Carbon monoxide insertion; Sulfur dioxide insertion; Phosphine substitution

1. Introduction

Overcoming the inertness of the dinitrogen molecule in order to convert it into ammonia derivatives is of great scientific as well as technical interest. The most feasible way to do this seems to be via attachment of the N₂ unit to several iron atoms, as demonstrated by the biological (nitrogenase enzymes) as well as the technical (Haber–Bosch process) ammonia synthesis. Similarly, in model systems from coordination chemistry the fixation of the N–N containing reaction intermediates to two iron atoms was one of the best approaches [1].

By using oligonuclear iron carbonyls we could show that multicenter attachment to organometallic complexes also leads to an unusual weakening of N-Nmultiple bonds [2,3] which is not the case when the same N-N containing substrates are attached to ruthenium clusters [4,5]. It seemed that the weakening was most pronounced in the Fe_2N_2 system 1 which prior to our work had eluded synthesis in reasonable quantities by rearrangements due to N–N cleavage [6,7]. We found an efficient preparation of the azobenzene complex 1 [3] which has enabled us to utilize the lability of its N–N bond, and we reported the reactions with CO and H₂ under very mild conditions leading to the insertion products 2 and 3 [3].

^{*} Corresponding author. Tel.: + 49 0761 2036120; fax: + 49 0761 2036001.

This paper presents further investigations on the reactivity of 1 versus CO, specifically under the influence of phosphine ligands. Secondly the reactivity towards SO_2 , whose insertion leading to 4 was briefly communicated [8], is detailed and some phosphine derivatives of the SO_2 insertion product are described.

2. Results and discussion

2.1. CO insertion products

As already reported [3], CO is inserted in the N–N bond of 1 quite easily. It therefore seemed to be of interest to find out whether this insertion tendency can be modified by ligand substitution at the iron atoms. Compound 1 was thus subjected to reactions with phosphine ligands. To our surprise no simple phosphine derivative of 1 could be obtained that way. Instead the CO liberated was incorporated by insertion in the N–N bond in all cases, and the resulting products were phophine derivatives of 2. Triphenylphosphine produced the monosubstituted product 2a. Trimethylphosphite gave a mixture of monosubstituted 2b and disubstituted 2c. The chelating phosphine dppm was attached twice in a monodentate fashion in product 2d.

$$Fe_{2}(CO)_{5}PPh_{3}(\mu - PhN - CO - NPh)$$

$$Fe_{2}(CO)_{5}[P(OMe)_{3}](\mu - PhN - CO - NPh)$$

$$Fe_{2}(CO)_{4}[P(OMe)_{3}]_{2}(\mu - PhN - CO - NPh)$$

$$Fe_{2}(CO)_{4}(\eta^{1} - dppm)_{2}(\mu - PhN - CO - NPh)$$

All four complexes were also obtained by reacting the basic CO insertion product 2 with the corresponding phosphine under the same conditions. This indicates that the phosphine substitutions do not occur on 1 at all. Support for this assumption comes from the observation [3,8] that thermolysis of 1 yields considerable amounts of 2. On the other hand phosphine substitution sets in only at temperatures close to the thermolysis temperature of 1.

2.2. SO_2 insertion products

Like CO, SO₂ is also inserted in the N–N bond of 1, yielding 4 quickly at room temperature and ordinary pressure [8]. However, unlike CO, SO₂ can be eliminated from 4 again by thermal treatment. The product of this elimination reaction was again found to be a CO insertion product, namely 2. The experimental evidence indicates that this reaction involves the re-formation of 1 as an intermediate step. The major observation in this context is that 4 does not react with CO up to its decomposition point, while at temperatures below this decomposition point 1 is being converted to 2 [3,8].

Table 1 IR data for the CO ligands (CH₂Cl₂, cm⁻¹)

2a	2056 vs	1993 vs	1993m		
2b	2053 m	2001 s	1983 vs	1945 s	
2c	2012 vs	1976 vs	1944 vs	1925 sh	
2d	2005 s	1970 vs	1939 vs		
4a	2005 vs	1962 s	1939 s		
4b	2064 s	2014 s	1993 vs	1953 w	
4c	2017 s	1988 vs	1948 vs		
4d	2008 s	1981 vs	1943 vs		

In order to find out whether phosphine substitution can also induce such a replacement of SO_2 by CO under milder conditions, we treated complex **4** with the same phosphines as complex **1**. The only reactions observed, however, were phosphine substitutions leading to PR_3 derivatives of **4**. PPh₃ was incorporated twice yielding **4a** while P(OMe)₃ replaced one or two CO ligands with formation of **4b** and **4c**. The reaction with dppm seems to have taken a course different from that with **1**: replacement of one CO on each iron atom results in **4d** with a symmetrically bridging dppm ligand.

$$\begin{split} & \operatorname{Fe}_{2}(\operatorname{CO})_{4}(\operatorname{PPh}_{3})_{2}(\mu - \operatorname{PhN} - \operatorname{SO}_{2} - \operatorname{NPh}) \\ & \operatorname{Fe}_{2}(\operatorname{CO})_{5}[\operatorname{P}(\operatorname{OMe})_{3}](\mu - \operatorname{PhN} - \operatorname{SO}_{2} - \operatorname{NPh}) \\ & \operatorname{Fe}_{2}(\operatorname{CO})_{4}[\operatorname{P}(\operatorname{OMe})_{3}]_{2}(\mu - \operatorname{PhN} - \operatorname{SO}_{2} - \operatorname{NPh}) \\ & \operatorname{Fe}_{2}(\operatorname{CO})_{4}(\eta^{1} - \operatorname{dppm})(\mu - \operatorname{PhN} - \operatorname{SO}_{2} - \operatorname{NPh}) \end{split}$$

Further heating of complexes 4a-4d or the reaction mixtures leading to them did not result in SO₂ elimination prior to thermal decomposition. This indicates that phosphine substitution stabilizes the complexes with respect to SO₂ elimination and reduces the likelihood of CO liberation, thereby suppressing both reaction steps occurring in the conversion of 4 to 2.

2.3. Product identifications

All complexes **2** show the presence of their μ -PhN– CO–NPh ligand by a medium-intensity ν (CO) band at 1720–1725 cm⁻¹ in the IR. Similarly the μ -PhN–SO₂– NPh ligand in all complexes **4** gives rise to two medium-intensity ν (SO) bands at 1280–1290 and 1150–1155 cm⁻¹, respectively. The ν (CO) bands of the terminal CO ligands (see Table 1) are in accord with the presence of either Fe₂(CO)₅ or symmetrical Fe₂(CO)₄ units. In the ¹H-NMR spectra the dominant features

Table 2 $^{31}\text{P-NMR}$ data (CDCl₃, $\delta/J)$ for the complexes

2a	46.8/s	4a	42.6/s	
2b	164.3/s	4b	166.2/s	
2c	164.8/s	4c	162.1/s	
2d	5.2/28.2	4d	53.8/s	
	60.5/28.2			

are the phenyl multiplets, complemented for complexes **b**, **c**, and **d** by the $P(OMe)_3$ doublets or the $P-CH_2-P$ multiplets. Relevant information is contained in the ³¹P{¹H}-NMR spectra (Table 2). They display the typical chemical shifts for the iron-bound phosphorus nuclei of PPh₃, $P(OMe)_3$, and dppm. This way the bonding situations in 2d and 4d are clearly differentiated: 4d has both phosphorus atoms attached to iron while in 2d one phosphorus atom of each dppm ligand is uncoordinated.

Crystal structure determinations of 2a and 2b as well as of 4a and 4c rounded off the product identifications. The molecular structures are displayed schematically in Figs. 1–4, and the pertinent bond lengths and angles are listed in Table 3 and Table 4. For reference purposes, the data of the parent complexes 2 and 4 are included.

Tables 3 and 4 show that for both types of compounds there is a very high similarity within the groups of three complexes each. The metal-ligand bonds vary only by ± 0.03 Å, the angles by $\pm 1^{\circ}$. The most significant, yet still minor, variation is that of the Fe-Fe bond lengths from 2.38 in 4 to 2.43 Å in 4c. Thus neither the type or degree of phosphine substitution nor the character of the species inserted in the N-N bond have a noteworthy influence on the bonding parameters of the Fe₂N₂ molecular skeleton.

Complexes 2, 2a and 2b can be considered derivatives of diphenylurea. They show this relation by having a coplanar arrangement of their C-N-CO-N-Cconstituents. In comparison to free urea [9] or diphenylurea [10] which observe the sp² requirements of the central carbon atom by showing valence angles very close to 120°, the N-C-N angle in the three complexes is severely narrowed and the N-C-O angles widened accordingly. The C-O bond is unusually short (cf. the standard value of 1.23 in esters and amides or the value of 1.26 Å in urea), and concomi-

Fig. 1. Molecular structure of 2a.

Fig. 2. Molecular structure of 2b.

tantly the C–N bonds are unusually long (cf. the C–N bond length of 1.32 in amides and the value of 1.33 Å in urea). Thus the CO insertion products look structurally more like lightly stabilized CO (cf. the C–O bond length of 1.13 Å in free CO) than like derivatives of urea.

The bridging ligand in complexes 4, 4a and 4c is derived from diphenyl sulphamide, and the structural data of sulphamide are available for comparison [11]. Again in the complexed form the N-S-N angle is severely compressed, when compared to the 'free' value of 112°, and both the S-O and S-N bond lengths are significantly lengthened in comparison to those in free sulphamide (1.39 and 1.60 Å, respectively). Actually the S-O bond lengths are virtually identical to those in free SO₂ (1.432 Å) [12]. This may indicate that the partly anionic nature of the sulphamide ligands results in a lengthening of all their bonds or that the inserted substrate has partly maintained its SO₂ character, as is also evident from the reversibility of the SO₂ insertion in the N-N bond of 1 [8].

Fig. 3. Molecular structure of 4a.

Fig. 4. Molecular structure of 4c.

The most visible difference within the two pairs of complexes **2a/2b** and **4a/4c** concerns the attachment of the phosphine ligands. In both cases the triphenylphosphine ligands are attached axially, i.e. *trans* to the Fe–Fe bonds, while the trimethyl phosphite ligands are located equatorially, i.e. *cis* to the Fe–Fe bonds. This may be explained by steric as well as electronic reasons. The sterically more demanding PPh₃ ligands prefer the sterically less crowded axial positions. The better π -accepting P(OMe)₃ ligands prefer the positions *trans* to the more electron-releasing nitrogen donors. Similar phenomena have been observed for phosphine substitutions of donor ligand capped clusters [13,14]. The noticeably different Fe–P bond lengths for Fe–PPh₃ versus Fe–P(OMe)₃ support this argument.

Table 3

Bond lengths (Å) and angles (°) in complex ${\bf 2}$ and its phosphine derivatives

	2	2a	2b
Bond length (Å)			
Fe1–Fe2	2.400(1)	2.415(1)	2.416(1)
Fe1–N1	1.982(2)	2.008(2)	1.996(2)
Fe1–N2	1.996(2)	1.994(2)	1.987(3)
Fe2–N1	1.991(2)	2.022(2)	1.984(2)
Fe2–N2	1.986(2)	2.007(3)	2.011(2)
Fe2–P	_	2.273(1)	2.160(1)
N1-C1	1.413(4)	1.408(4)	1.403(4)
N2C1	1.410(4)	1.414(4)	1.421(4)
C1–O1	1.194(4)	1.194(4)	1.195(4)
Bond angle (°)			
Fe1-N1-Fe2	74.3(1)	73.6(1)	74.8(1)
Fe1–N2–Fe2	74.1(1)	74.3(1)	74.4(1)
N1–Fe1–N2	64.7(1)	64.3(1)	64.6(1)
N1-Fe2-N2	64.7(1)	63.9(1)	64.3(1)
N1-C1-N2	97.8(2)	98.1(2)	97.7(2)

Table 4

Bond lengths (Å) and angles (°) in complex **4** and its bis(phosphine) derivatives

	4 [8]	4a	4c
Bond length (Å)			
Fe1–Fe2	2.378(1)	2.391(1)	2.431(1)
Fe1–N1	2.005(3)	2.056(2)	2.023(3)
Fe1-N2	2.005(3)	2.042(2)	2.025(3)
Fe2–N1	2.005(3)	2.035(2)	2.023(3)
Fe2–N2	2.005(3)	2.058(2)	2.019(3)
Fe1–P1	_	2.297(1)	2.173(1)
Fe2–P2	_	2.293(1)	2.160(1)
N1–S	1.672(4)	1.662(2)	1.667(3)
N2–S	1.672(4)	1.653(2)	1.665(3)
SO1	1.431(3)	1.431(2)	1.439(3)
S-O2	1.431(3)	1.434(2)	1.438(3)
Bond angle (°)			
Fe1-N1-Fe2	72.7(1)	71.6(1)	73.8(1)
Fe1-N2-Fe2	72.7(1)	71.4(1)	73.9(1)
N1-Fe1-N2	67.1(2)	66.4(1)	66.9(1)
N1-Fe2-N2	67.1(2)	66.5(1)	67.0(1)
N1-S-N2	83.0(2)	85.2(1)	84.1(2)
O1-S-O2	115.1(3)	114.7(1)	114.0(2)

3. Conclusions

This work has underlined the labilization of the N=N bond of azobenzene by its attachment to the $Fe_2(CO)_6$ fragment. Neither CO nor SO₂ insertions are known to occur in free azoarenes. Complex 1, in contrast, undergoes these insertions under rather mild conditions, and the resulting products are of considerable stability. They can be derivatized easily by phosphine substitution. The molecular backbones Fe_2N_2CO and $Fe_2N_2SO_2$ show a strong conservation of their structural and bonding features irrespective of the number and kind of phosphine ligands present. It seems worthwhile to exploit the insertion reactions in terms of converting CO or SO₂ into organic compounds.

4. Experimental details

The general experimental techniques were as described previously [15], as was the purification of SO_2 [8]. Complexes 1 and 2 were prepared according to the published procedure [3]. Phosphines were obtained commercially. Silica gel plates (Merck, silica gel 60, F_{254} , thickness 0.2 mm) were used for thin layer chromatography.

4.1. Preparations

Complex 2a: (a) A hexane solution (50 ml) of 1 (0.075 g, 0.162 mmol) and PPh₃ (0.045 g, 0.172 mmol) was heated to reflux for 1 h. The solvent was removed under reduced pressure and the residue was subjected to

TLC. Hexane/CH₂Cl₂ (1:1) eluted one major band which afforded 0.083 g (70%) of red, crystalline **2a**. Anal. Found: C, 59.41; H, 3.53; N, 3.92. $C_{36}H_{25}Fe_2N_2O_6P$ (724.3). Calc.: C, 59.70; H, 3.48; N, 3.87.

(b) A hexane solution (50 ml) of **2** (0.065 g, 0.133 mmol) and PPh₃ (0.035 g, 0.133 mmol) was heated to reflux for 1 h. The solvent was removed in vacuo and the residue recrystallized from hexane/CH₂Cl₂ (1:1) to give 0.094 g (92%) of **2a**.

Complexes **2b** and **2c**: (a) A hexane solution (60 ml) of **1** (0.202 g, 0.437 mmol) and P(OMe)₃ (0.081 g, 0.653 mmol) was heated to reflux for 1 h. The solvent was removed in vacuo. TLC with hexane/CH₂Cl₂ (2:1) afforded first an orange band yielding 0.115 g (45%) of orange, crystalline **2b**. Anal. Found: C, 42.95; H, 3.23; N, 4.78. C₂₁H₁₉Fe₂N₂O₉P (586.1). Calc.: C, 43.04; H, 3.27; N, 4.78. Next, a red band was eluted, yielding 0.119 g (40%) of red, crystalline **2c**. Anal. Found: C, 40.65; H, 4.36; N, 4.15. C₂₃H₂₈Fe₂N₂O₁₁P₂ (682.1). Calc.: C, 40.50; H, 4.14; N, 4.11.

(b) A hexane solution (30 ml) of **2** (0.075 g, 0.153 mmol) and P(OMe)₃ (0.032 g, 0.258 mmol) was refluxed and worked up as before to yield 0.045 g (50%) of **2b** and 0.042 g (40%) of **2c**.

Complex 2d: (a) A hexane solution (60 ml) of 1 (0.075 g, 0.162 mmol) and dppm (0.130 g, 0.338 mmol) was refluxed for 1 h. The solvent was removed in vacuo. TLC with hexane/CH₂Cl₂ (1:1) gave several minor bands followed by one major orange band which afforded 0.059 g (30%) of orange, amorphous 2d. Anal. Found: C, 66.43; H, 4.61; N, 2.29. $C_{67}H_{54}Fe_2N_2O_5P_4$ (1202.8). Calc.: C, 66.90; H, 4.53; N, 2.32.

(b) **2** (0.075 g, 0.153 mmol) and dppm (0.118 g, 0.307 mmol) by the same procedure as before yielded 0.129 g (70%) of **2d**.

Complex 4: SO₂ gas was bubbled through a hexane solution (40 ml) of compound 1 (0.075 g, 0.162 mmol) for 5 min. An immediate reaction took place resulting in the formation of an orange precipitate. The reaction mixture was allowed to stir for an additional 10 min and then cooled to -15° C to complete precipitation. The precipitate was separated from the clean solution by decantation and washed twice with cold hexane. Recrystallization of the residue from hexane/CH₂Cl₂ at -5° C gave 0.081 g (95%) of 2 as orange crystals. Anal. Found: C, 41.16; H, 1.88; N, 5.33. C₁₈H₁₀Fe₂N₂O₈S (526.1). Calc.: C, 41.10; H, 1.92; N, 5.33.

Complex **4a**: A toluene solution (20 ml) of **4** (0.050 g, 0.095 mmol) and PPh₃ (0.050 g, 0.191 mmol) was heated at 60°C for 8 h. The solvent was removed under reduced pressure and the residue washed several times with cold hexane to remove unreacted PPh₃. TLC with hexane/CH₂Cl₂ (2:1) gave a single orange band which yielded 0.085 g (90%) of orange, crystalline **4a**. Anal. Found: C, 62.51; H, 3.94; N, 2.89. $C_{52}H_{40}Fe_2N_2O_6P_2S$ (994.6). Calc.: C, 62.79; H, 4.05; N, 2.82.

Complexes **4b** and **4c**: A toluene solution (25 ml) of **4** (0.085 g, 0.162 mmol) and P(OMe)₃ (0.040 g, 0.322 mmol) was heated at 50°C for 10 h. The solvent was removed in vacuo. TLC with hexane/CH₂Cl₂ (1:1) eluted first 0.005 g of unreacted **4**, then an orange band yielding 0.030 g (30%) of orange, crystalline **4b**. Anal. Found: C, 37.95; H, 2.89; N, 4.25. $C_{20}H_{19}Fe_2N_2O_{10}PS$ (622.1). Calc.: C, 38.61; H, 3.08; N, 4.50. The third, orange, band afforded 0.064 g (55%) of orange, crystalline **4c**. Anal. Found: C, 36.65; H, 3.79; N, 3.86. $C_{22}H_{28}Fe_2N_2O_{12}P_2S$ (718.2). Calc.: C, 36.79; H, 3.93; N, 3.90.

Complex 4d: A toluene solution (30 ml) of 4 (0.085 g, 0.152 mmol) and dppm (0.073 g, 0.190 mmol) was heated at 60°C for 8 h. After removal of the solvent in vacuo, TLC with hexane/CH₂Cl₂ (3:1) gave one major band which yielded 0.104 g (80%) of orange, crystalline 4b. Anal. Found: C, 57.29; H, 3.63; N, 3.21. $C_{41}H_{32}Fe_2N_2O_6P_2S$ (854.4). Calc.: C, 57.63; H, 3.78; N, 3.28.

4.2. Thermolysis of 4

A toluene solution of **4** (0.025 g, 0.048 mmol) was heated to reflux for 3 h. The solvent was removed in vacuo. TLC with hexane/CH₂Cl₂ (3:2) gave two orange bands. From the first band traces of unreacted **4** were recovered. The second band yielded 0.015 g (65%) of **2**.

4.3. Structure determinations [16]

Crystals were obtained directly from the isolated compounds. The data sets were obtained with an Enraf-Nonius CAD4 diffractometer using Mo-K_a radiation and the $\omega/2\Theta$ scan technique at $2\Theta = 4-52^{\circ}$. Absorption corrections based on psi scans were applied. The structures were solved by direct methods and refined anisotropically using the SHELX program suite [17]. Hydrogen atoms were included with a common isotropic temperature factor and a fixed C-H distance of 0.96 Å. The *R* values are defined as ${}_{1}R_{1} = \Sigma|F_{o}-F_{c}|/\Sigma F_{o}$ and $wR_{2} = [\Sigma[w(F_{o}^{2}-F_{c}^{2})^{2}/\Sigma[w(F_{o}^{2})^{2}]]^{2}$. The structure of **2** [18] was redetermined for the purpose of precision and comparability. Drawings were produced with SCHAKAL [19]. Table 5 lists the crystallographic details.

Acknowledgements

This work was supported by the Fonds der Chemischen Industrie and by the Commission of the European Communities. S.E. Kabir gratefully acknowledges the A. v. Humboldt Foundation for a fellowship.

	2a	2b	4a	4c
Crystal size (mm)	$0.4 \times 0.3 \times 0.3$	$0.6 \times 0.6 \times 0.4$	$0.7 \times 0.4 \times 0.3$	$0.8 \times 0.5 \times 0.1$
Space group	$P\overline{1}$	$P2_1/n$	$P2_1/n$	$P2_1/n$
a(Å)	11.308(1)	15.210(1)	11.507(1)	10.900(1)
b (Å)	11.791(1)	9.373(1)	26.785(2)	16.052(1)
c (Å)	13.453(1)	18.658(2)	15.173(1)	18.113(2)
α (Å)	80.44(4)	90	90	90
β (Å)	82.99(5)	109.33(6)	99.60(5)	105.87(5)
γ (Å)	66.37(4)	90	90	90
Z	2	4	4	4
$V(Å^3)$	1617.5(2)	2510.0(3)	4611.1(5)	3048.4(4)
$D_{\text{calc.}}$ (g cm ⁻³)	1.49	1.55	1.43	1.57
$\mu \text{ (mm}^{-1})$	1.00	1.27	0.80	1.19
Reflections collected	6610	5072	9392	6175
Independant reflections $[I \ge 2\sigma(I)]$	4672	4201	6615	4173
Variables	424	316	586	370
R_1	0.039	0.042	0.035	0.042
wR_2	0.118	0.119	0.110	0.118
Res. El. densities	+0.6	+0.8	+0.4	+0.6
(e Å ³)	-0.6	-0.7	-0.3	-0.4

References

- (a) D. Sellmann, W. Soglowek, F. Knoch, W. Moll, Angew. Chem. Int. Ed. Engl. 101 (1989) 1244. (b) D. Sellmann, W. Soglowek, F. Knoch, W. Moll, Angew. Chem. Int. Ed. Engl. 28 (1989) 1271.
- [2] E.J. Wucherer, M. Tasi, B. Hansert, A.K. Powell, M.T. Garland, J.F. Halet, J.Y. Saillard, H. Vahrenkamp, Inorg. Chem. 28 (1989) 3564.
- [3] B. Hansert, H. Vahrenkamp, J. Organomet. Chem. 459 (1993) 265.
- [4] B. Hansert, H. Vahrenkamp, Chem. Ber. 126 (1993) 2011.
- [5] B. Hansert, A.K. Powell, H. Vahrenkamp, Chem. Ber. 124 (1991) 2697.
- [6] M. Dekker, G.R. Knox, Chem. Commun. (1967) 1243.
- [7] J.S. Song, S.H. Han, S.T. Nguyen, G.L. Geoffroy, A.L. Rheingold, Organometallics 9 (1990) 2386.
- [8] S.E. Kabir, M. Ruf, H. Vahrenkamp, J. Organomet. Chem. 512 (1996) 261.
- [9] P.A. Vaughan, J. Donohue, Acta Crystallogr. 5 (1952) 530.
- [10] W. Dannecker, J. Kopf, H. Rust, Cryst. Struct. Commun. 8 (1979) 429.
- [11] K.N. Trueblood, S.W. Mayer, Acta Crystallogr. 9 (1956) 628.

- [12] D. Kivelson, J. Chem. Phys. 22 (1954) 904.
- [13] H. Bantel, W. Bernhardt, A.K. Powell, H. Vahrenkamp, Chem. Ber. 121 (1988) 1247.
- [14] M.I. Bruce, M.J. Lidell, C.A. Hughes, B.W. Skelton, A.H. White, J. Organomet. Chem. 347 (1988) 157, 181, 207.
- [15] W. Deck, M. Schwarz, H. Vahrenkamp, Chem. Ber. 120 (1987) 1515.
- [16] The crystallographic data of the structures described in this paper were deposited with the Cambridge Crystallographic Data Centre under the reference numbers 101734 (for 2), 101735 (for 2a), 101738 (for 2b), 101736 (for 4a) and 101737 (for 4c). Copies of the data are available free of charge from the following address: The Director, CCDC, 12 Union Road, Cambridge CB2 1EZ, UK (Telefax: +12 23/3 36 0 33; e-mail: teched@chemcrys. cam.ac.uk).
- [17] G.M. Sheldrick, SHELXL and SHELXS, Universität Göttingen, 1986 and 1993.
- [18] (a) J.A.J. Jarvis, B.E. Job, B.T. Kilbourn, R.H.B. Mais, P.G. Owston, P.F. Todd, Chem. Commun. (1967) 1149. (b) A.S. Katugin, A.A. Pasynskii, I.C. Eremenko, E.A. Vas'vtinskaya, Y.T. Struchkov, A.Y. Yansysky, J. Organomet. Chem. 386 (1990) 225. (c) J. Piron, P. Piret, M. van Meerssche, Bull. Soc. Chim. Belg. 76 (1967) 505.
- [19] E. Keller, SCHAKAL-97, Universität Freiburg, 1997.